Tracking with ranked signals
نویسندگان
چکیده
We present a novel graphical model approach for a problem not previously considered in the machine learning literature: that of tracking with ranked signals. The problem consists of tracking a single target given observations about the target that consist of ranked continuous signals, from unlabeled sources in a cluttered environment. We introduce appropriate factors to handle the imposed ordering assumption, and also incorporate various systematic errors that can arise in this problem, particularly clutter or noise signals as well as missing signals. We show that inference in the obtained graphical model can be simplified by adding bipartite structures with appropriate factors. We apply a hybrid approach consisting of belief propagation and particle filtering in this mixed graphical model for inference and validate the approach on simulated data. We were motivated to formalize and study this problem by a key task in Oceanography, that of tracking the motion of RAFOS ocean floats, using range measurements sent from a set of fixed beacons, but where the identities of the beacons corresponding to the measurements are not known. However, unlike the usual tracking problem in artificial intelligence, there is an implicit ranking assumption among signal arrival times. Our experiments show that the proposed graphical model approach allows us to effectively leverage the problem constraints and improve tracking accuracy over baseline tracking methods yielding results similar to the ground truth hand-labeled data.
منابع مشابه
A Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method
Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملPotentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems
Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...
متن کاملTracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit
Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...
متن کاملTracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit
Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...
متن کامل